Электрическое напряжение
Большинство людей в быту могут оперировать таким понятием как электрическое напряжение. Практически все знают, что бытовая розетка находится под напряжением 220В, а пальчиковая батарейка выдает напряжение всего в 1.5В. При этом далеко не каждый человек, окончивший среднюю школу или даже технический ВУЗ в состоянии ответить, что же все-таки означает термин электрическое напряжение. В этом материале мы постараемся ответить на этот вопрос, по возможности не прибегая к сложной математике.
Определение электрического напряжения
В учебниках по физике и электротехнике можно встретить разные определения электрического напряжения. Одно из них звучит следующим образом: электрическое напряжение между двумя точками пространства равно разности потенциалов электрического поля в этих точках. Математически это записывается так:
U=φ_a-φ_b (1).
Где U – электрическое напряжение, а φ_a и φ_b потенциалы электрического поля в точках A и B соответственно.
Если мы не знаем что такое потенциал электрического поля в точке, то приведенное выше определение мало проясняет вопрос, что же такое электрическое напряжение. Под потенциалом электрического поля в точке понимают работу, по перемещению единичного заряда совершаемую электрическим полем из данной точки в точку с нулевым потенциалом. На первый взгляд определение электрического потенциала кажется довольно сложным. Например, не совсем понятно, где находится точка с нулевым потенциалом.
Для начала нужно запомнить, что электрический потенциал это работа по переносу единичного заряда. Если обратиться к формуле (1) то станет ясно, что электрическое напряжение не что иное, как разность двух работ. То есть электрическое напряжение, тоже есть работа. Отсюда мы приходим ко второму определению. Электрическое напряжение численно равно работе по переносу единичного электрического заряда из точки А в точку В. При этом φ_a и φ_b это потенциальная энергия которой обладает единичный заряд в точках А и В соответственно.
Для лучшего понимания изложенного выше можно привести следующую аналогию. Любое тело, находящееся на некотором расстоянии от Земли обладает потенциальной энергией. Для того чтобы поднять тело выше придется выполнить некоторую работу. Величина этой работы будет равна разности потенциальных энергий, которыми обладает тело на разной высоте. Похожую картину мы наблюдаем, когда мы имеем дело с электрическим полем.
Что касается точки пространства, в которой электрический заряд обладает нулевым электрическим потенциалом, то в теории электричества эту точку можно выбрать произвольно. Связанно это с тем, что электрическое поле «потенциально». Чтобы прояснить этот термин придется прибегнуть к высшей математике, а мы решили этого избежать. На практике специалисты в области электротехники в качестве точек с нулевым потенциалом часто выбирают поверхность Земли. И многие измерения выполняют относительно нее.
Электрические поля могут быть постоянными (неизменными во времени) и переменными. Переменные электрические поля могут изменяться по различным математическим законам. В технике чаще всего используются переменные электрические поля, которые изменяются по закону синуса. В случае переменного электрического поля мгновенное значение разности потенциалов между двумя точками можно вычислить по следующей формуле:
u(t)=U_m sin〖(ωt)〗 (2).
Здесь u – мгновенное значение напряжения; Um – максимальное значение напряжения; ω – частота, t – время.
Измерение электрического напряжения
Электрическое напряжение измеряют с помощью вольтметров. Для измерения напряжения (разности потенциалов) на участке электрической цепи щупы вольтметра подключают к концам этого участка и по шкале считывают показания прибора.
Существует множество типов вольтметров. Мы остановимся на аналоговых вольтметрах с магнитоэлектрическими измерительными механизмами. Эти механизмы довольно часто применяют в щитовых вольтметрах и многофункциональных измерительных приборах – мультиметрах. Магнитоэлектрический электрический механизм представляет собой проволочную катушку, размещенную между полюсами магнита. Катушка подвешивается на спиральных пружинах обеспечивающих высокую чувствительность прибора. С катушкой связана указательная стрелка, с помощью которой осуществляется отсчет показаний на шкале прибора. Ниже на рисунке показано устройство магнитоэлектрического механизма.
Магнитоэлектрические измерительные механизмы имеют высокую чувствительность. С их помощью можно измерить напряжения составляющие сотые доли вольта. Для расширения пределов измерения последовательно с измерительным механизмом включают добавочные сопротивления. Схема простейшего вольтметра постоянного тока показана на рисунке.
Одним из важнейших параметром вольтметра является его внутреннее сопротивление. Чем больше значение внутреннего сопротивления вольтметра, тем меньшую погрешность можно получить в процессе измерения. Для аналоговых вольтметров внутреннее сопротивление обычно составляет 20кОм на вольт. Если необходимо получить большее значение сопротивления для измерений применяют электронные вольтметры, цифровые или аналоговые.
Для измерения переменного напряжения в конструкцию вольтметров включают выпрямители, которые преобразуют переменное напряжение в постоянное. Шкалы вольтметров для измерения переменного напряжения обычно градуируют в действующих (эффективных) значениях напряжения. Действующее значение переменного тока связано с максимальным следующим соотношением.
U=1/√2 U_m=0,707U_m (3)
Действующее значение удобно применять при вычислении мощности электрической цепи. Когда мы говорим, что в электрической розетке присутствует напряжение 220В, речь идет именно о действующем значении напряжения.
В коротком материале трудно рассказать обо всех нюансах связанных с электрическим напряжением и способах его измерения. Но мы надеемся, что текст окажется полезен читателю.- Комментарии